МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева» (Астраханский государственный университет им. В. Н. Татищева)

		ЛАСОВАНО одитель ОПОП	3 a:		ВЕРЖДАЮ ий кафедрой ПМИ
		М. В. Коломина			М. В. Коломина
«	»	2022 г.	«	»	2022 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ЛИНЕЙНАЯ АЛГЕБРА»

Составитель(и)	Коломина М.В., к.фм.н., доцент, АГУ Москаленко М. А., ИТМО Трифанов А. И., ИТМО
Направление подготовки / специальность	01.03.02 Прикладная математика и информатика
Направленность (профиль) ОПОП	Программирование и искусственный интеллект
Квалификация (степень)	бакалавр
Форма обучения	очная
Год приёма	2023
Курс	1
Семестры	1-2

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1. Целью освоения дисциплины «Линейная алгебра» является формирование представления об основных методах алгебры, а также о базовых понятиях аналитической геометрии.

1.2. Задачи освоения дисциплины:

- формирование навыков использования и проверки алгебраических соотношений в прикладных математических задачах, ориентировании в основных алгебраических структурах и нахождении связи между ними;
 - формирование знаний о свойствах объектов основных алгебраических структур;
- формирование навыка обращения с объектами линейного пространства (точки, прямые, плоскости, квадратичные кривые и поверхности).

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

- **2.1. Учебная дисциплина «Линейная алгебра»** относится к обязательной части и осваивается в 1-2 семестрах.
- **2.2.** Для изучения данной учебной дисциплины необходимы знания, умения и навыки школьной математики на профильном уровне.
- 2.3. Последующие учебные дисциплины, для которых необходимы знания, умения, навыки, формируемые данной учебной дисциплиной:
- Математический анализ;
- Дифференциальные уравнения;
- Теория вероятностей
- Математическая статистика
- Методы оптимизации
- Теория игр.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс освоения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОПОП ВО по данному направлению подготовки (специальности):

- а) общепрофессиональных (ОПК):
 - ОПК-1 способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности:
 - ОПК-3 способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности;
- б) профессиональных (ПК):
 - ПК-8 способность понимать, совершенствовать и применять современный математический аппарат.

Таблица 1 – Декомпозиция результатов обучения

Код	Планиру	уемые результаты обучения по дисциплине			
и наименование компетен- ции	Знать	Уметь	Владеть		
ОПК-1	ИОПК-1.1.1 Знать	ИОПК-1.2.1 Уметь планировать	ИОПК-1.3.1 Владеть		
ОПК-1.1. Планирует само-	законы и методы	самостоятельную деятельность в	навыком планирова-		
стоятельную деятельность в	естественных наук и	решении профессиональных	ния своей деятельно-		

Код	Планиру	уемые результаты обучения по дис	циплине
и наименование компетен- ции	Знать	Уметь	Владеть
решении профессиональных задач. ОПК-1.2. Обосновывает и использует положения, законы и методы естественных наук и математики при решении задач профессиональной деятельности. ОПК-3 ОПК-3.1. Выявляет и фор-	математики, содержание процесса целеполагания и постановки задач. ИОПК-3.1.1 Обладает	задач, использовать положения, законы и методы естественных наук и математики при решении задач профессиональной деятельности, обосновывать и применять инновационные идеи и альтернативные подходы к решению задач профессиональной деятельности с применением естественнонаучных и общепрофессиональных знаний. ИОПК-3.2.1 Умеет использовать аппарат математических	сти, обоснования используемых методов и подходов. ИОПК-3.3.1 Имеет навыки применения и
мулирует целевые характеристики описания объекта моделирования в профессиональной деятельности. ОПК-3.2. Определяет методы описания объектов и соответствующие им модели в профессиональной деятельности.	фундаментальными знаниями по математическим моделям для решения прикладных задач.	моделей при решении задач в профессиональной деятельности.	модификации математических моделей при решении задач в профессиональной деятельности
ПК-8 Способность понимать, совершенствовать и применять современный математический аппарат.	ИПК-1.1.8 Обладает базовыми знаниями, современного математического аппарата, формальными постановки задач линейной алгебры	ИПК-8.2. Умеет применять методы интегрального и дифференциального исчисления одной и нескольких переменных при решении прикладных задач.	ИПК-8.3.1 Навыком применения современного математического аппарата при решении прикладных задач.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Объём дисциплины составляет 5, 5 зачётных единиц, в том числе 144 часа, выделенных на контактную работу обучающихся с преподавателем (из них 144 часа –лекционные занятия) и 216 часов на самостоятельную работу обучающихся.

Таблица 2 – Структура и содержание дисциплины

тионни 2 структури и содержиние дисцииния							
Раздел, тема дисциплины		С Контактная работа (в часах)		Самост. работа		Форма текущего контроля успеваемости, форма промежуточной аттестации	
		Л	ПЗ	ЛР	КР	CP	[по семестрам]
Раздел 1. Линейная алгебра	1	32				44	Индивидуальное задание. Коллоквиум.
Раздел 2. Аналитическая геометрия.	1	32				44	Индивидуальное задание.
Раздел 3. Тензорная алгебра	2	20				32	Индивидуальное задание. Коллоквиум.
Раздел 4. Спектральный анализ	2	20				32	Индивидуальное задание. Коллоквиум.
Раздел 5. Евклидово пространство. Ортогональность.	2	20				32	Индивидуальное задание. Коллоквиум
Раздел 6. Тензоры и линейные операторы в евклидовом пространстве	2	20				32	Индивидуальное задание
Итого		144				216	ЭКЗАМЕН

 Π римечание: Л – лекция; Π 3 – практическое занятие, семинар; Π P – лабораторная работа; KP – курсовая работа; CP – самостоятельная работа.

Таблица 3 – Матрица соотнесения разделов, тем учебной дисциплины формируемых компетенций

политетенции					
Разделы,	Кол-во			Общее кол	пичество компетенций
темы дисциплины	часов	ОПК-1	ОПК-3	ПК-8	
Раздел 1	76	+	+	+	3
Раздел 2	76	+	+	+	3
Раздел 3	52	+	+	+	3
Раздел 4	52	+	+	+	3
Раздел 5	52	+	+	+	3
Раздел 6	52	+	+	+	3
Итого	360				

Краткое содержание каждой темы дисциплины

- Раздел 1. Линейная алгебра. Теория решения СЛАУ, Теория линейных пространств.
- Раздел 2. Аналитическая геометрия. Кривые второго порядка, Прямая и плоскость.
- **Раздел 3. Тензорная алгебра.** Независимое от ПЛФ определение тензора, Полилинейные формы, Линейный оператор.
- **Раздел 4.** Спектральный анализ. Спектральный анализ ЛО общего вида, Инвариантные и корневые подпространства ЛО, Полиномы.
- **Раздел 5. Евклидово пространство. Ортогональность.** Ортогональность, Метрические, нормированные и евклидовы пространства.
- **Раздел 6. Тензоры и линейные операторы в евклидовом пространстве**. Разложения матриц, Метрический тензор.

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕПОДАВАНИЮ И ОСВОЕНИЮ ДИСЦИПЛИНЫ

5.1. Указания для преподавателей по организации и проведению учебных занятий по дисциплине

Лекционные занятия

Основной формой реализации теоретического обучения является лекция, которая представляет собой систематическое, последовательное изложение преподавателемлектором учебного материала теоретического характера. Цель лекции – организация целенаправленной познавательной деятельности студентов по овладению программным материалом учебной дисциплины.

Порядок подготовки лекционного занятия включает в себя выполнение следующих этапов:

- изучение требований программы дисциплины,
- определение целей и задач лекции,
- разработка плана проведения лекции,
- подбор литературы (ознакомление с методической литературой, публикациями периодической печати по теме лекционного занятия),
- отбор необходимого и достаточного по содержанию учебного материала,
- определение методов, приемов и средств поддержания интереса, внимания, стимулирования творческого мышления студентов,
- написание конспекта лекции.
 - Лекция должна включать следующие разделы:
- формулировку темы лекции;

- указание основных изучаемых разделов или вопросов и предполагаемых затрат времени на их изложение;
- изложение вводной части;
- изложение основной части лекции;
- краткие выводы по каждому из вопросов;
- заключение;
- рекомендации литературных источников по излагаемым вопросам.

Самостоятельная работа

Самостоятельная работа — это вид учебной деятельности, которую студент совершает в установленное время и в установленном объеме индивидуально или в группе, без непосредственной помощи преподавателя (но при его контроле), руководствуясь сформированными ранее представлениями о порядке и правильности выполнения действий.

В учебном процессе образовательного учреждения выделяются два вида самостоятельной работы:

- 1) аудиторная выполняется на учебных занятиях, под непосредственным руководством преподавателя и по его заданию;
- 2) внеаудиторная выполняется по заданию преподавателя, но без его непосредственного участия. Внеаудиторные самостоятельные работы представляют собой логическое продолжение аудиторных занятий, проводятся по заданию преподавателя, который инструктирует студентов и устанавливает сроки выполнения задания.

5.2. Указания для обучающихся по освоению дисциплины

Лекция. Как ее слушать и записывать

- 1. Лекция основной вид обучения в вузе.
- 2. В лекции излагаются основные положения теории, ее понятия и законы, приводятся факты, показывающие связь теории с практикой.
- 3. Накануне лекции необходимо повторить содержание предыдущей лекции, а затем посмотреть тему очередной лекции по программе (по плану лекций).
- 4. Полезно вести записи (конспекты) лекций: для непонятных вопросов оставлять место при работе над темой лекции с учебными пособиями.
- 5. Записи лекций следует вести в отдельной тетради, оставляя место для дополнений во время самостоятельной работы.
- 6. При конспектировании лекций выделяйте главы и разделы, параграфы, подчеркивайте основное.

Организация самостоятельной работы

- 1. Бюджет времени студента определяется временем, отведенным на занятия по расписанию и на самостоятельную работу. Задание и материал для самостоятельной работы дается во время учебных занятий, на этих же занятиях преподаватель осуществляет контроль за самостоятельной работой.
- 2. Для выполнения объема самостоятельной работы необходимо заниматься в среднем 4 часа (академических) ежедневно, т.е. по 24 часа в неделю.
- 3. Начинать самостоятельные занятия следует с первых же дней семестра, установив определенный порядок, равномерный ритм на весь семестр. Полезно для этого составить расписание порядка дня.

Таблица 4 – Содержание самостоятельной работы обучающихся

Вопросы, выносимые	Кол-во	Форма работы	
на самостоятельное изучение	часов	T op.mu pwoorzi	
Раздел 1. Линейная алгебра	44	Индивидуальное задание. Подго-	
		товка к коллоквиуму.	
Раздел 2. Аналитическая геометрия.	44	Индивидуальное задание.	
Раздел 3. Тензорная алгебра	32	Индивидуальное задание. Подго-	

Вопросы, выносимые на самостоятельное изучение	Кол-во часов	Форма работы
		товка к коллоквиуму.
Раздел 4. Спектральный анализ	32	Индивидуальное задание. Подготовка к коллоквиуму.
Раздел 5. Евклидово пространство. Ортогональность.	32	Индивидуальное задание. Подго- товка к коллоквиуму.
Раздел 6. Тензоры и линейные операторы в евклидовом пространстве	32	Индивидуальное задание

5.3. Виды и формы письменных работ, предусмотренных при освоении дисциплины, выполняемые обучающимися самостоятельно

Выполнение индивидуальных заданий.

6. ОБРАЗОВАТЕЛЬНЫЕ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

При реализации различных видов учебной работы по дисциплине «Линейная алгебра» могут использоваться электронное обучение и дистанционные образовательные технологии.

6.1. Образовательные технологии

Таблица 5 – Образовательные технологии, используемые при реализации учебных занятий

Раздел, тема	Ć	Форма учебного занятия				
дисциплины	Лекция	Практическое занятие,	Лабораторная			
		семинар	работа			
Раздел 1. Линейная алгебра	Проблемная лекция,	Не предусмотрено	Не предусмотре-			
	коллоквиум		но			
Раздел 2. Аналитическая геометрия.	Проблемная лекция	Не предусмотрено	Не предусмотре-			
			но			
Раздел 3. Тензорная алгебра	Проблемная лекция,	Не предусмотрено	Не предусмотре-			
	коллоквиум		но			
Раздел 4. Спектральный анализ	Проблемная лекция,	Не предусмотрено	Не предусмотре-			
	коллоквиум		но			
Раздел 5. Евклидово пространство. Орто-	Проблемная лекция,	Не предусмотрено	Не предусмотре-			
гональность.	коллоквиум		но			
Раздел 6. Тензоры и линейные операторы	Проблемная лекция	Не предусмотрено	Не предусмотре-			
в евклидовом пространстве			но			

6.2. Информационные технологии

- использование возможностей интернета в учебном процессе (использование сайта преподавателя (рассылка заданий, предоставление выполненных работ, ответы на вопросы, ознакомление обучающихся с оценками и т. д.));
- использование электронных учебников и различных сайтов (например, электронных библиотек, журналов и т. д.) как источников информации;
- использование возможностей электронной почты преподавателя;
- использование средств представления учебной информации (электронных учебных пособий и практикумов, применение новых технологий для проведения очных (традиционных) лекций и семинаров с использованием презентаций и т. д.);
- использование интегрированных образовательных сред, где главной составляющей являются не только применяемые технологии, но и содержательная часть, т. е. информационные ресурсы (доступ к мировым информационным ресурсам, на базе которых строится учебный процесс);
- использование виртуальной обучающей среды (LMS Moodle «Цифровое обучение») или иных информационных систем, сервисов и мессенджеров.

6.3. Программное обеспечение, современные профессиональные базы данных и информационные справочные системы

Учебные занятия по дисциплине могут проводиться с применением информационнотелекоммуникационных сетей при опосредованном (на расстоянии) интерактивном взаимодействии обучающихся и преподавателя в режимах on-line и off-line в формах видеоконференции, собеседования в режиме чат, выполнения виртуальных практических заданий.

6.3.1. Программное обеспечение

Наименование программного обеспечения	Назначение
Adobe Reader	Программа для просмотра электронных документов
Платформа дистанционного обучения LMS	Виртуальная обучающая среда
Moodle	
Microsoft Office 2013	Пакет офисных программ

6.3.2. Современные профессиональные базы данных и информационные справочные системы

- 1. Электронная библиотека «Астраханский государственный университет» собственной генерации на платформе ЭБС «Электронный Читальный зал БиблиоТех». https://biblio.asu.edu.ru
- 2. Электронно-библиотечная система (ЭБС) ООО «Политехресурс» «Консультант студента». www.studentlibrary.ru.
- 3. Электронная библиотечная система издательства ЮРАЙТ, раздел «Легендарные книги». www.biblio-online.ru, https://urait.ru/
- 4. Электронно-библиотечная система BOOK.ru https://book.ru

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

7.1. Паспорт фонда оценочных средств

При проведении текущего контроля и промежуточной аттестации по дисциплине «Линейная алгебра» проверяется сформированность у обучающихся компетенций, указанных в разделе 3 настоящей программы. Этапность формирования данных компетенций в процессе освоения образовательной программы определяется последовательным освоением дисциплин и прохождением практик, а в процессе освоения дисциплины – последовательным достижением результатов освоения содержательно связанных между собой разделов, тем.

Таблица 6 – Соответствие разделов, тем дисциплины, результатов обучения по дисциплине и оценочных средств

Контролируемый раздел, тема дисциплины	Код контролируемой	Наименование
D 1 П	компетенции	оценочного средства
Раздел 1. Линейная алгебра	ОПК-1, ОПК-3, ПК-8	Исследовательская работа, колло- квиум
Раздел 2. Аналитическая геометрия.	ОПК-1, ОПК-3, ПК-8	Исследовательская работа
Раздел 3. Тензорная алгебра	ОПК-1, ОПК-3, ПК-8	Исследовательская работа, колло- квиум
Раздел 4. Спектральный анализ	ОПК-1, ОПК-3, ПК-8	Исследовательская работа, колло- квиум работа
Раздел 5. Евклидово пространство. Орто-	ОПК-1, ОПК-3, ПК-8	Исследовательская работа, колло-
гональность.		квиум
Раздел 6. Тензоры и линейные операторы в	ОПК-1, ОПК-3, ПК-8	Исследовательская работа.
евклидовом пространстве		

7.2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Таблица 7 – Показатели оценивания результатов обучения в виде знаний

Шкала оцени- вания	Критерии оценивания
5 «отлично»	демонстрирует глубокое знание теоретического материала, умение обоснованно излагать свои мысли по обсуждаемым вопросам, способность полно, правильно и аргументированно отвечать на вопросы, приводить примеры
4 «хорошо»	демонстрирует знание теоретического материала, его последовательное изложение, способность приводить примеры, допускает единичные ошибки, исправляемые после замечания преподавателя
3 «удовлетвори- тельно»	демонстрирует неполное, фрагментарное знание теоретического материала, требующее наводящих вопросов преподавателя, допускает существенные ошибки в его изложении, затрудняется в приведении примеров и формулировке выводов
2 «неудовлетво- рительно»	демонстрирует существенные пробелы в знании теоретического материала, не способен его изложить и ответить на наводящие вопросы преподавателя, не может привести примеры

Таблица 8 – Показатели оценивания результатов обучения в виде умений и владений

1 uotinga o 110 kusutetiin oqenibuniin pesytibi u 100 ooy teniin b biiqe yatetiin ii biiuqenii		
Шкала оцени- вания	Критерии оценивания	
5 «отлично»	демонстрирует способность применять знание теоретического материала при выполнении заданий, последовательно и правильно выполняет задания, умеет обоснованно излагать свои мысли и делать необходимые выводы	
4 «хорошо»	демонстрирует способность применять знание теоретического материала при выполнении заданий, последовательно и правильно выполняет задания, умеет обоснованно излагать свои мысли и делать необходимые выводы, допускает единичные ошибки, исправляемые после замечания преподавателя	
3 «удовлетвори-	демонстрирует отдельные, несистематизированные навыки, испытывает затруднения и допускает ошибки при выполнении заданий, выполняет задание по подсказке преподава-	
тельно»	теля, затрудняется в формулировке выводов	
2	не способен правильно выполнить задания	
«неудовлетво-		
рительно»		

7.3. Контрольные задания и иные материалы, необходимые для оценки результатов обучения по дисциплине

Вопросы к экзамену (1 семестр)

- 1. Алгебраические структуры: группа, кольцо, поле.
- 2. Алгебраические структуры: линейное пространство, алгебра.
- 3. Поле комплексных чисел.
- 4. Линейное пространство. Примеры линейных пространств.
- 5. Линейная зависимость векторов. Основные леммы о линейной зависимости.
- 6. Базис и размерность линейного пространства.
- 7. Изоморфизм линейных пространств.
- 8. Подпространства линейного пространства: определение, примеры, линейная
- 9. оболочка, линейное многообразие.
- 10. Подпространства линейного пространства: сумма и пересечение подпространств, прямая сумма, дополнение.
- 11. Перестановки.
- 12. Отображения. Линейные формы. Сопряженное пространство.
- 13. Определители и их основные свойства (без теоремы о разложении определителя по элементам строки или столбца).

- 14. Теорема о разложении определителя по элементам строки или столбца.
- 15. Критерий линейной зависимости набора векторов.
- 16. Ранг матрицы. Теорема о базисном миноре.
- 17. Линейные операторы и их матричная запись. Примеры.
- 18. Пространство линейных операторов.
- 19. Алгебра. Примеры. Изоморфизм алгебр.
- 20. Алгебра операторов и матриц.
- 21. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.
- 22. Обратная матрица: критерий обратимости, вычисление обратной матрицы методом присоединенной матрицы.
- 23. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
- 24. Обратный оператор. Критерий существования обратного оператора.
- 25. Линейные алгебраические системы. Теоремы Крамера и Кронекера-Капелли (формулировки, использующие определители и ранг матрицы).
- 26. Линейные алгебраические системы. Геометрическое исследование систем.
- 27. Теорема Крамера (геометрическая формулировка).
- 28. Геометрическое исследование систем. Теорема Кронекера-Капелли (геометрическая формулировка) и ее следствия.
- 29. Альтернатива Фредгольма для линейной системы уравнений.
- 30. Фундаментальная система решений линейной однородной системы. Общее
- 31. решение однородных и неоднородных систем.
- 32. Инварианты линейного оператора. Инвариантные подпространства.

Примерные задания для контрольных работ и задач

Раздел 1.Линейная алгебра

Индивидуальное задание

1. Решить систему линейных уравнений

$$\begin{cases} x_1 - 2x_2 + x_3 - 3x_4 + x_5 = 0, \\ 2x_1 + 1 + x_2 - 2x_3 + x_4 - x_5 = 2, \\ x_1 - x_2 + x_3 - x_4 + x_5 = 14, \\ 2x_1 - 3x_2 - 4x_4 + 2x_5 = 14 \end{cases}$$

2. Пользуя теорему Лапласа, вычислить определитель двумя способами:

$$\begin{bmatrix} 1 & 2 & -1 & 1 & 3 \\ -2 & 1 & 4 & 3 & 1 \\ 3 & -5 & 0 & 1 & 0 \\ 2 & 2 & 0 & -3 & 0 \\ -4 & 3 & 1 & 5 & 2 \end{bmatrix}$$

- 3. Подпространства L_1 задано как линейная оболочка векторов A_1 и A_2 . Подпространство L_2 задано как линейная оболочка векторов B_1 , B_2 и B_3 . Найти базис и размерность суммы и пересечения этих подгрупп.
- 4. Даны две квадратные матрицы A и B.
- (a) Вычислить коммутатор матриц $|A,B| = A \cdot B B \cdot A$.
- (b) Найти матрицу A^{-1} методом Гаусса. Проверить, что $A \cdot A^{-1} = E$.
- (c) Найти матрицу B^{-1} методом присоединенной (союзной) матрицы. Проверить, что B^{-1} \cdot B=E.

5. Автоморфизм $A: R^5 \to R^5$ задан в стандартном базисе пространства R^5 матрицей A. Найти ядро и образ линейного оператора A, указать их размерности.

Примерный список вопросов к коллоквиуму

- 1. Системы координат на плоскости и в пространстве.
- 2. Векторы и основные действия с ними (сложение, умножение на число).
- 3. Векторное введение координат. Координаты вектора.
- 4. Свойства основных действий над векторами. Проекции векторов.
- 5. Скалярное произведение векторов и его свойства.
- 6. Векторное произведение и его свойства.
- 7. Смешанное произведение векторов и его свойства.
- 8. Двойное векторное произведение и его свойства.
- 9. Замена координат при переходе к новой системе отсчета. Матрица перехода.
- 10. Уравнения линий и поверхностей.
- 11. Уравнения прямой на плоскости и в пространстве. Взаимное расположение прямых.
- 12. Частные виды уравнений прямой на плоскости. Расстояние от точки до прямой.
- 13. Уравнения плоскости в пространстве. Взаимное расположение плоскостей.
- 14. Взаимное расположение прямой и плоскости в пространстве.
- 15. Эллипс: геометрическое определение, каноническое уравнение, симметрия и форма эллипса.
- 16. Эллипс: полярное уравнение, параметрические уравнения, директрисы, уравнение касательной к эллипсу.
- 17. Окружность.
- 18. Гипербола: геометрическое определение, каноническое уравнение, симметрия и форма гиперболы, асимптоты.
- 19. Гипербола: полярное уравнение, параметрические уравнения, директрисы, уравнение касательной к гиперболе.

Раздел 2. Аналитическая геометрия.

Индивидуальное задание (исследовательская работа)

1. Вычислить определитель тремя способами: разложение по второй строке, разложением по третьему столбцу и приведением к определителю диагональной матрицы методом Гаусса:

$$\begin{bmatrix} 3 & 5 & 7 & 2 \\ 1 & 2 & 3 & 4 \\ -2 & -3 & 3 & 2 \\ 1 & 3 & 5 & 4 \end{bmatrix}$$

2. Решить систему уравнений двумя способами: методом Крамера и методом Гаусса. Выполнить проверку.

$$\begin{cases} 3x + 2y + z = 5, \\ 2x + 3y + z = 1, \\ 2x + y + 3z = 11 \end{cases}$$

- 3. Даны четыре точки A(2,-1,3), B(4,5,0), C(2,2,-1) и D(2,2,5). Найти $\overrightarrow{AB}, |\overrightarrow{AB}|, \overrightarrow{AB}x\overrightarrow{AC}, \cos(\varphi)$, где φ угол между векторами \overrightarrow{AB} и \overrightarrow{AC} , направляющий вектор \overrightarrow{b} биссектрисы угла φ , площадь $S_{\Delta ABC}$ треугольника ABC, объем V_{ABCD} параллелепипеда ABCD, и высоту h_D , опущенную из вершины D.
- 4. Даны две плоскости:

$$\alpha_1$$
: $x + 2y - z + 1 = 0$,
 α_2 : $x - y + z - 2 = 0$.

Составить уравнение плоскости α_3 перпендикулярной к плоскости α_1 и пересекающей ее по прямой, лежащей в плоскости α_2 . Сделать рисунок.

- 5. Фокусы эллипса совпадают с фокусами гиперболы $\frac{x^2}{9} = \frac{y^2}{4} = 1$. Эллипс проходит через точку M(-2,1,5). Составить уравнение этого эллипса. Сделать рисунок.
- 6. Дано уравнение кривой второго порядка $5x^2 + 4xy + 8y^2 52x 64y + 164 = 0$. Выполните последовательно преобразования координат: поворот, а затем параллельный перенос координатных осей, преобразовать к каноническому виду уравнение кривой второго порядка и построить ее в канонической и исходной системе координат, а также найти параметры кривой.
- 7. Изобразить тело, ограниченное поверхностями $z = 1 + x^2 + y^2$, $z = -\sqrt{x^2 + y^2 1}$, $z = -1 \sqrt{3} + \sqrt{x^2 + y^2}$.

Раздел 3. Тензорная алгебра

Индивидуальное задание (исследовательская работа)

- 1. Даны две квадратные матрицы A, B.
 - а. Вычислить коммутатор матриц [A, B] = AB BA;
 - b. Найти матрицу A^{-1} методом Гаусса. Проверить, что $AA^{-1} = E$.
 - с. Найти матрицу B^{-1} методом присоединенной (союзной) матрицы. Проверить, что $B^{-1}B = E$;
 - d. Найти значение полинома $f(x) = x^2 + 2x + 4$ от матрицы A.
- 2. Автоморфизм $A: R^5 \to R^5$ задан в стандартном базисе пространства матрицей A. Найти ядро и образ линейного оператора A, указать их размерности.
- 3. Тензор a_{kl}^{ij} ранга (2,2) задан четырехмерной матрицей второго порядка A. Задана матрица перехода T от старого базиса к новому базису.
 - а. Вычислить элемент a_{11}^{11} в новом базисе.
 - b. Найти всеразличные свертки тензора (в старом базисе).
- 4. Тензор a^{ijl} (3 раза контравариантный) задан трехмерной матрицей третьего порядка A.
 - а. Вычислить матрицу транспонированного тензора $b^{ijk} = a^{ijk}$;
 - b. Вычислить матрицу полностью симметричного тензора $a^{(ijk)}$;
 - с. Вычислить матрицу полностью антисимметричного тензора $a^{\{ijk\}}$;
 - d. Вычислить матрицу тензора $a^{(i|j|k)}$, симметричного по индексам i и k;
 - е. Вычислить матрицу тензора $a^{i|jk|}$, антисимметричного по индексам j и k.

Примерный список вопросов к коллоквиуму

- 1. Линейные операторы и их матричная запись. Примеры.
- 2. Собственные векторы и собственные значения линейного оператора: существование, вычисление.
- 3. Пространство линейных операторов.
- 4. Кратности собственных чисел (алгебраическая, геометрическая, полная). Теорема Гамильтона-Кэли.
- 5. Алгебра. Примеры. Изоморфизм алгебр.
- 6. Спектральный анализ скалярного оператора: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
- 7. Алгебра операторов и матриц.
- 8. Нильпотентные операторы (определение, простейшие свойства). Жорданова клетка.
- 9. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.
- 10. Инварианты линейного оператора. Инвариантные подпространства.

- 11. Обратная матрица: критерий обратимости, вычисление обратной матрицы методом присоединенной матрицы.
- 12. Минимальный полином и инвариантные подпространства. Спектральная теорема для линейного оператора произвольного вида.
- 13. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
- 14. Ультраинвариантные подпространства.
- 15. Унитарный и ортогональный операторы: основные определения и свойства.
- 16. Обратный оператор. Критерий существования обратного оператора.
- 17. Собственные векторы и собственные значения линейного оператора: основные определения и свойства.
- 18. Преобразование координат векторов X и X* при замене базиса.
- 19. Спектральная теорема и инварианты скалярного оператора. Тождество Кэли.
- 20. Преобразование матрицы линейного оператора А при замене базиса. Преобразование подобия.
- 21. Алгебра скалярных полиномов. Идеал. Минимальный полином.
- 22. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.
- 23. Спектральный анализ линейного оператора с простым спектром: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
- 24. Независимость определителя оператора от базиса. Теорема умножения определителей.
- 25. Спектральная теорема и функциональное исчисление для скалярного оператора.
- 26. Транспонирование тензора.
- 27. Разложение линейного пространства в сумму подпространств. 2-я теорема о ядре и образе. Теорема о проекторах.
- 28. Определитель линейного оператора. Внешняя степень оператора.
- 29. Структура нильпотентного оператора. Базис Жордана (обзор).
- 30. Независимость определителя оператора от базиса. Теорема умножения определителей.
- 31. Алгебра операторных полиномов. Минимальный полином линейного оператора.
- 32. Тензоры (ковариантность, независимое от ПЛФ определение). Пространство тензоров.
- 33. Жорданова форма матрицы линейного оператора.
- 34. Преобразование матрицы линейного оператора А при замене базиса. Преобразование подобия.
- 35. Собственные векторы и собственные значения линейного оператора: существование, вычисление.
- 36. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
- 37. Алгебра скалярных полиномов. Идеал. Минимальный полином.
- 38. Свертка тензора.
- 39. Кратности собственных чисел (алгебраическая, геометрическая, полная). Теорема Гамильтона-Кэли.

Вопросы к экзамену (2 семестр)

- 1. Алгебраические структуры: группа, кольцо, поле.
- 2. Алгебраические структуры: линейное пространство, алгебра.

- 3. Поле комплексных чисел.
- 4. Линейное пространство. Примеры линейных пространств.
- 5. Линейная зависимость векторов. Основные леммы о линейной зависимости.
- 6. Базис и размерность линейного пространства.
- 7. Изоморфизм линейных пространств.
- 8. Подпространства линейного пространства: определение, примеры, линейная
- 9. оболочка, линейное многообразие.
- 10. Подпространства линейного пространства: сумма и пересечение подпространств, прямая сумма, дополнение.
- 11. Перестановки.
- 12. Отображения. Линейные формы. Сопряженное пространство.
- 13. Определители и их основные свойства (без теоремы о разложении определителя по элементам строки или столбца).
- 14. Теорема о разложении определителя по элементам строки или столбца.
- 15. Критерий линейной зависимости набора векторов.
- 16. Ранг матрицы. Теорема о базисном миноре.
- 17. Линейные операторы и их матричная запись. Примеры.
- 18. Пространство линейных операторов.
- 19. Алгебра. Примеры. Изоморфизм алгебр.
- 20. Алгебра операторов и матриц.
- 21. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.
- 22. Обратная матрица: критерий обратимости, вычисление обратной матрицы методом присоединенной матрицы.
- 23. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
- 24. Обратный оператор. Критерий существования обратного оператора.
- 25. Линейные алгебраические системы. Теоремы Крамера и Кронекера-Капелли (формулировки, использующие определители и ранг матрицы).
- 26. Линейные алгебраические системы. Геометрическое исследование систем.
- 27. Теорема Крамера (геометрическая формулировка).
- 28. Геометрическое исследование систем. Теорема Кронекера-Капелли (геометрическая формулировка) и ее следствия.
- 29. Альтернатива Фредгольма для линейной системы уравнений.
- 30. Фундаментальная система решений линейной однородной системы. Общее
- 31. решение однородных и неоднородных систем.
- 32. Инварианты линейного оператора. Инвариантные подпространства.

Раздел 4. Спектральный анализ Раздел 5. Евклидово пространство. Ортогональность. Раздел 6. Тензоры и линейные операторы в евклидовом пространстве

Примерный список вопросов к коллоквиуму

- 1. Линейные операторы и их матричная запись. Примеры.
- 2. Собственные векторы и собственные значения линейного оператора: существование, вычисление.
- 3. Пространство линейных операторов.

- 4. Кратности собственных чисел (алгебраическая, геометрическая, полная). Теорема Гамильтона-Кэли.
- 5. Алгебра. Примеры. Изоморфизм алгебр.
- 6. Спектральный анализ скалярного оператора: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
- 7. Алгебра операторов и матриц.
- 8. Нильпотентные операторы (определение, простейшие свойства). Жорданова клетка.
- 9. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.
- 10. Инварианты линейного оператора. Инвариантные подпространства.
- 11. Обратная матрица: критерий обратимости, вычисление обратной матрицы методом присоединенной матрицы.
- 12. Минимальный полином и инвариантные подпространства. Спектральная теорема для линейного оператора произвольного вида.
- 13. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
- 14. Ультраинвариантные подпространства.
- 15. Унитарный и ортогональный операторы: основные определения и свойства.
- 16. Обратный оператор. Критерий существования обратного оператора.
- 17. Собственные векторы и собственные значения линейного оператора: основные определения и свойства.
- 18. Преобразование координат векторов X и X* при замене базиса.
- 19. Спектральная теорема и инварианты скалярного оператора. Тождество Кэли.
- 20. Преобразование матрицы линейного оператора А при замене базиса. Преобразование подобия.
- 21. Алгебра скалярных полиномов. Идеал. Минимальный полином.
- 22. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.
- 23. Спектральный анализ линейного оператора с простым спектром: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
- 24. Независимость определителя оператора от базиса. Теорема умножения определителей.
- 25. Спектральная теорема и функциональное исчисление для скалярного оператора.
- 26. Транспонирование тензора.
- 27. Разложение линейного пространства в сумму подпространств. 2-я теорема о ядре и образе. Теорема о проекторах.
- 28. Определитель линейного оператора. Внешняя степень оператора.
- 29. Структура нильпотентного оператора. Базис Жордана (обзор).
- 30. Независимость определителя оператора от базиса. Теорема умножения определителей.
- 31. Алгебра операторных полиномов. Минимальный полином линейного оператора.
- 32. Тензоры (ковариантность, независимое от ПЛФ определение). Пространство тензоров.
- 33. Жорданова форма матрицы линейного оператора.
- 34. Преобразование матрицы линейного оператора А при замене базиса. Преобразование подобия.

- 35. Собственные векторы и собственные значения линейного оператора: существование, вычисление.
- 36. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
- 37. Алгебра скалярных полиномов. Идеал. Минимальный полином.
- 38. Свертка тензора.
- 39. Кратности собственных чисел (алгебраическая, геометрическая, полная). Теорема Гамильтона-Кэли.

Исследовательская работа

- 1. Оператор общего вида имеет в некотором базисе матрицу А. Найти его минимальный и характеристический полином, сформировать теорему Гамильтона-Кэли.
- 2. Автоморфизм $A: \mathbb{R}^4 \to \mathbb{R}^4$ имеет спектр $\sigma_A = \{3; -5\}$. При этом второе собственное значение является простым, а спектральная и алгебраическая кратности первого собственного значения совпадают и равны 2. Написать Жорданову форму матрицы данного автоморфизма.
- 3. Дать определение нормированного пространства.
- 4. Ортогонализовать следующую систему векторов унитарного пространства со стандартным скалярным произведением $x_1 = (1 + 2i, i)^T$, $x_2 = (i, 1 i)^T$.

Таблица 9 – Примеры оценочных средств с ключами правильных ответов

№ п/п	Пип задания Формулировка задания		Правильный ответ	Время выполнения (в минутах)
	Код и наименование проверяемой компетенции			
		рименять математические, естествен		
<i>оля п</i>	онимания окруз Задание за-	жающего мира и для решения задач про Если в высказывании нет скобок, то	фессиональнои оеятельности З	1-3
1.	у крытого типа	порядок выполнения следующий:	3	1-3
	крытого типа	1. &, ∨, ⇒, ⇔, ¬		
		$\begin{array}{ccc} 1. & & & & & & & \\ & & & & & & \\ 2. & & & & & & \\ \end{array}$		
		$3. \exists, \vee, \&, \Rightarrow, \Leftrightarrow$		
		4. 7, &, ∨, ⇔, ⇒		
2.		Какие числа в перестановки	2	1-3
		3, 5, 4, 1, 2 числа образуют инверсию?		
		1. 3,4		
		2. 3,1		
		3. 1,2		
3.		4. 3,5	D - 1	5-7
3.		Проверьте, пропорциональны ли век-	Векторы \bar{a} и \bar{b} не пропорци-	3-7
4.		торы $\bar{a} = (4, -2, 1), \bar{b} = (8, -4, 4)$ Ассоциативный закон для матриц A и	ональны 2	1-3
٦.		В имеет вид:	2	1-3
		1. $(A+B)\cdot C = AC+BC$		
		2. $(AB) \cdot C = A \cdot (BC)$		
		3. $(A+B)+C = A+B+C$		
5.		Модуль комплексного числа $z = 1 + i$	2	1-3
		равен:		
		1. 1		
		2. 2		
		$3. \sqrt{2}$		
		4. $\sqrt{1+i}$		2.5
6.	Задание	В классе учится 16 мальчиков и 10	Дежурным можно назначить	2-5
	открытого	девочек. Сколькими способами можно	либо мальчика, либо девоч-	
	типа	назначить одного дежурного?	ку, т.е. дежурным может быть любой из 16 мальчи-	
			ков, либо любая из 10 дево-	
			ков, лиоо люоси из то дево-	

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выпол- нения (в минутах)
			чек. По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.	
7.		Определите, истина ли формула $(P \Rightarrow A) \& (P \lor A)$	Ложна	3-5
8.		Определите четная или нечетная подстановка $\begin{pmatrix} 3 & 1 & 4 & 5 & 2 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}$.	В ее верхней строке 4 инверсии, в нижней 7 инверсий. Общее число инверсий в двух строках есть 11, и поэтому подстановка нечетна.	3-5
9.		Найдите обратную матрицу матрицы $\begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}$	$A^{-1} = \begin{bmatrix} -7/3 & 2 & -1/3 \\ 5/3 & -1 & -1/3 \\ -2 & 1 & 1 \end{bmatrix}$	7-10
10.		Запишите систему $x_1 - x_2 + 2x_3 + x_4 = 7$ $8x_1 - 2x_2 + x_3 + 9x_4 = 21$ $6x_1 - x_2 + x_3 + 6x_4 = 17$ $x_1 - x_2 + 2x_3 + 2x_4 = 8$ в матричной форме.	$\begin{bmatrix} 1 & -1 & 2 & 1 \\ 8 & -2 & 1 & 9 \\ 6 & -1 & 1 & 6 \\ 1 & -1 & 2 & 2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 21 \\ 17 \\ 8 \end{bmatrix}$	3-5

Код и наименование проверяемой компетенции

ОПК-3 — Способен формулировать, строить и применять модели для управления достижением планируемых результатов процессов и объектов профессиональной деятельности на базе знаний математики, программирования и программного обеспечения

ки, nj	ки, программирования и программного обеспечения			
1.	Задание за-	Верна ли таблица истинности?	Нет	1-3
	крытого типа	$A B \Leftrightarrow$	$A B \Leftrightarrow$	
		И И Л	И И И	
		И Л И	И Л Л	
		Л И И	Л И Л	
		л л л	Л Л И	
2.		Верно ли утверждение: определитель	верно	1-3
		не меняется при транспонировании.		
3.		Сколько рациональных корней имеет	3	10-12
		многочлен $24x^5 + 10x^4 - x^3 -$		
		$19x^2 - 5x + 6$?		
		1. 5		
		2. 4		
		3. 3		
		4. 2		
		5. 1		
		6. 0		
4.		Найдите такое число c , чтобы много-	3	5-7
		член $P(x) = x^5 - x^4 + cx^3$ делился на		
		двучлен $x + 4$:		
		1. $c = 0$		
		2. $c = -10$		
		3. $c = -20$		
		4. $c = 20$		
5.		Найдите последовательность транс-	Возможный вариант:	3-5
		позиций переводящую перестановку	12345→(меняем местами	
		1, 2, 4, 3, 5 в перестановку 2, 5, 3, 4, 1;	символы 2 и 1) 21435→(ме-	
			няем местами символы 1 и	
			5) 25431→(меняем местами	
			символы 4 и 3) 25341. Таким	
			образом, имеем нечетное	

Время выпол-

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выпол- нения (в минутах)
			число транспозиций – 3	(= ::::::)
6.	Задание открытого типа	Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом-k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?	Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m*k.	2-5
7.		Возведите сумму в степень, используя Бином Ньютона: $(a+b)^6$	$(a+b)^{6} = C_{6}^{0} \cdot a^{6} + C_{6}^{1} \cdot a^{5}$ $\cdot b + C_{6}^{2} \cdot a^{4}$ $\cdot b^{2}$ $+ C_{6}^{3} \cdot a^{3}$ $\cdot b^{3} + C_{6}^{4}$ $\cdot a^{2} \cdot b^{4} +$ $+ C_{6}^{5} \cdot a \cdot b^{5} + C_{6}^{6} \cdot a \cdot b^{6}$ $= a^{6} + 6$ $\cdot a^{5} \cdot b + 15$ $\cdot a^{4} \cdot b^{2} +$ $+ 20 \cdot a^{3} \cdot b^{3} + 15 \cdot a^{2}b^{4} + 6$ $\cdot a \cdot b^{5} + b^{6}.$	7-10
8.		Вычислите определитель 3-го порядка 4	Ответ: 1	5-7
9.		Подобрать i и k так, чтобы произведение $a_{1i}a_{32}a_{4k}a_{25}a_{53}$ входило в определитель 5-го порядка со знаком плюс.	При $i = 1, k = 4$ произведение $a_{1i}a_{32}a_{4k}a_{25}a_{53}$ входит в определитель 5-го порядка со знаком «+»	5-7
10.		При каком значении параметра m векторы $\bar{a}=(m,\frac{1}{2},-2,4,\frac{1}{4},2,-\frac{1}{16})$ и $\bar{b}=(4,2,-8,16,1,8,-\frac{1}{4})$ будут пропорциональны?	m = 1	5-7
		проверяемой компетенции ь понимать, совершенствовать и прим	енять современный матемап	пический аппа-
pam	2	D.	1	1.2
1.	Задание за- крытого типа	В ящике находится п разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать? 1. n способами 2. $n+1$ способами 3. $n!$ способами 4. n^2 способами	1	1-3
2.		Число a корнем многочлена $P(x) = 2x^4 + 5x^3 - 2x^2 - 9$, если 1. $a = -3$ 2. $a = 0$ 3. $a = 3$ 4. $a = -2$	1	3-5
3.		Кратность корня $x = 2$ многочлена $f(x) = x^3 - 3x^2 + 4$ равна: 1. 0 2. 1 3. 2 4. 3	2	5-7
4.		Решение матричного уравнения $AX = C$ при $A = \begin{pmatrix} 5 & -4 \\ -8 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$,	3	7-10

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выпол- нения (в минутах)
		$C = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} $ равно: 1. $\begin{pmatrix} -5 & 5 \\ -2 & 2 \end{pmatrix}$ 2. $\begin{pmatrix} \frac{5}{2} & -\frac{5}{2} \\ -\frac{13}{2} & -\frac{13}{2} \end{pmatrix}$ 3. $\begin{pmatrix} -5 & 5 \\ -\frac{13}{2} & \frac{13}{2} \end{pmatrix}$ 4. $\begin{pmatrix} 5 & -5 \\ 2 & -2 \end{pmatrix}$		
5.		Чтобы разрешить уравнение $XB = C$ относительно X нужно: 1. умножить обе его части на B^{-1} справа 2. умножить обе его части на B^{-1} слева 3. умножить обе его части на $\frac{1}{B}$ справа 4. умножить обе его части на $\frac{1}{B}$ слева	1	1-3
6.	Задание открытого	Определить характер четности перестановки 3, 5, 4, 1, 2	Перестановка нечетная	3-5
7.	типа	С каким знаком в определитель 6-го порядка входят произведения (первый индекс – номер строки, второй – номер столбца): $a_{14}a_{23}a_{31}a_{56}a_{42}a_{65}$;	Со знаком +.	7-10
8.		Даны векторы $\bar{a}=(11,4,6), \bar{b}=(2,8,-3), \bar{c}=(5,-2,-1)$ найти вектор $\bar{d},$ если: $\bar{d}=3\bar{a}+4\bar{b}-2\bar{c}$	(31,24,8)	5-7
9.		Решите систему $3x_1 - 2x_2 + 5x_3 + 4x_4 = 2$ $6x_1 - 4x_2 + 4x_3 + 3x_4 = 3$ $9x_1 - 6x_2 + 3x_3 + 2x_4 = 4$	Система имеет бесконечное множество решений вида $\{(7+12a+b)/18; a; (1-5b)/6; b\}$ где a, b - произвольные действительные числа. Других решений система не имеет.	10-15
10.		Разложите рациональную дробь в сумму простых дробей $\frac{2x^4 - 10x^3 + 7x^2 + 4x + 3}{x^5 - 2x^3 + 2x^2 - 3x + 2}$	$\frac{3}{x+2} + \frac{1}{(x-1)^2} - \frac{2}{x-1} + \frac{x-3}{x^2+1}$	15-20

7.4. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине

Таблица 10 – Технологическая карта рейтинговых баллов по дисциплине

№ п/п	Контролируемые мероприятия	Количество мероприятий / баллы	Максимальное количество баллов	Срок пред- ставления
	1 семестр			
	Осн	овной блок		
1.	Коллоквиум	2/10	20	
2.	Индивидуальные задания	2/10	20	
Bcer	0		40	-
	Блок бонусов			
3.	Посещение занятий		10	

№ п/п	Контролируемые мероприятия	Количество мероприятий / баллы	Максимальное количество баллов	Срок пред- ставления
Всего			10	-
	Дополнительный блок**			
4.	Экзамен			
Всего		50	-	
ИТО	ΓΟ	100	=	

	Основной блок			
5.	Коллоквиум	2/10	20	
6.	Индивидуальное задание	4/5	20	
Bce	ΓΟ	-	40	-
		Блок бонусов		
7.	Посещение занятий		10	
Bce	Γ0		10	-
	Доп	олнительный блок**		
8.	Экзамен			
Всего		50	-	
ИТ	ОГО		100	-

Таблица 11 – Система штрафов (для одного занятия)

Показатель	Балл
Опоздание на занятие	-1
Нарушение учебной дисциплины	-5
Неготовность к занятию	-1
Пропуск занятия без уважительной причины	-1

Таблица 12 — Шкала перевода рейтинговых баллов в итоговую оценку за семестр по дисциплине

Сумма баллов	Оценка по 4-балльной шкале
90–100	5 (отлично)
85–89	
75–84	4 (хорошо)
70–74	
65–69	2 (
60–64	3 (удовлетворительно)
Ниже 60	2 (неудовлетворительно)

При реализации дисциплины в зависимости от уровня подготовленности обучающихся могут быть использованы иные формы, методы контроля и оценочные средства, исходя из конкретной ситуации.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Основная литература

- 1. Беклемишев, Д. В. Курс аналитической геометрии и линейной алгебры: Учеб. для вузов. / Беклемишев Д. В. 12-е изд., испр. Москва: ФИЗМАТЛИТ, 2009. 312 с. ISBN 978-5-9221-0979-6. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785922109796.html (ЭБС «Консультант студента»)
- 2. Беклемишева, Л. А. Сборник задач по аналитической геометрии и линейной алгебре : учебное пособие / Беклемишева Л. А. , Петрович А. Ю. , Чубаров И. А. ; Под ред. Д. В. Беклемишева. 2-е изд. , перераб. Москва : ФИЗМАТЛИТ, 2006. 496 с. ISBN 5-9221-

- 0010-6. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN5922100106.html (ЭБС «Консультант студента»)
- 3. Элементы линейной алгебры [Электронный ресурс]: учебное пособие / Т.А. Гулай, А.Ф. Долгополова, В.А. Жукова, С.В. Мелешко, И.А. Невидомская Ставрополь: АГРУС Ставропольского гос. аграрного ун-та, 2017. URL: http://www.studentlibrary.ru/book/stavgau 00145.html (ЭБС «Консультант студента»).
- 4. Сборник задач по аналитической геометрии и линейной алгебре [Электронный ресурс] / Ю.М. Смирнова М.: Логос, 2017. URL: http://www.studentlibrary.ru/book/ISBN5940103758.html (ЭБС «Консультант студента»).
- 5. Линейная алгебра и аналитическая геометрия [Электронный ресурс] / Протасов Ю.М. М.: ФЛИНТА, 2017. URL: http://www.studentlibrary.ru/book/ISBN9785976509566.html (ЭБС «Консультант студента»).
- 6. Аналитическая геометрия. Векторная алгебра. Кривые второго порядка [Электронный ресурс]: Учеб. пособие. / Под ред. А.А. Грешилова М.: Логос, 2017. URL: http://www.studentlibrary.ru/book/ISBN5940102042.html (ЭБС «Консультант студента»).

8.2. Дополнительная литература

- 1. Алгебра и теория чисел [Электронный ресурс]: учебное пособие / Сикорская Г.А. Оренбург: ОГУ, 2017. URL: http://www.studentlibrary.ru/book/ISBN9785741019436.html (ЭБС «Консультант студента»).
- 2. Справочное пособие по высшей математике [Электронный ресурс]: учебное пособие / Бутырин В.И. URL: Новосибирск: Изд-во НГТУ, 2016. http://www.studentlibrary.ru/book/ISBN9785778229402.html (ЭБС «Консультант студента»).

8.3. Интернет-ресурсы, необходимые для освоения дисциплины

1. Электронно-библиотечная система (ЭБС) ООО «Политехресурс» «Консультант студента». www.studentlibrary.ru

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наличие учебной аудитории с доской или мультимедиа аудитории.

Рабочая программа дисциплины при необходимости может быть адаптирована для обучения (в том числе с применением дистанционных образовательных технологий) лиц с ограниченными возможностями здоровья, инвалидов. Для этого требуется заявление обучающихся, являющихся лицами с ограниченными возможностями здоровья, инвалидами, или их законных представителей и рекомендации психолого-медико-педагогической комиссии. Для инвалидов содержание рабочей программы дисциплины может определяться также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).